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BACKGROUND

The UCLA Center for Technology Assessment of the Center for the Study of

Evaluation has an existing contract with Defense Advance Research Projects Agency to

study human benchmarking methodology for the evaluation of artificial intelligence

systems. System, of interest, i!udc '." iou, natural language, experts system shells, and

expert systems. This document provides a literature review which will serve as an

intellectual foundation for human benchmarking in the area of expert systems. The

literature will be reviewed from two viewpoints: (1) a computer science and software

engineering perspective and (2) a cognitive science perspective with a focus on

psychological assessment.

The measurement of expert systems development efforts and products challenges

existing technologies for software assessment. The challenges stem from the knowledge

engineering approach to software development and the nature of the expert system

applications typically developed. Standard approaches to verification and validation (V&V)

and quality assurance (Q&A) do not adequately address these challenges.

Two kinds of problems result from the novel characteristics of expert system

development. The first kind of problem stems from differences in the software engineering

process. For example, existing approaches to software evaluation in the military are based

on a model of conventional software development. But the development of knowledge-

based expert systems may not conform to the phases in the development life cycle as

described in DOD-STD-2167A (U.S. Department of Defense, 1987a). For one, expert

system development is more distinctly incremental. Specifications are often developed in

the course of knowledge engineering. Thus the verification approach of assessing ihe

simple match between preordained specifications and code becomes inappropriate. Even if



a standard verification and validation approach could be taken, the development phases and

milestones for expert systems development do not align with those used in conventional

software engineering.

The second kind of problem in expert system evaluation is that there is no agreed

upon or fully developed methodology for assessing expert system attributes and quality

(U.S. Department of Defense, op. cit.). This deficiency can, in part, be attributed to the

relative newness of the development approach, as suggested above. But characteristics of

the products of these development efforts also pose special problems. Since the output, if

not the process. of an expert system is intended to replicate human expert performance, the

problem of defining and measuring expertise arises. Performance criteria or standards for

expert systems are difficult to define. Hayes-Roth, Waterman and Lenat (1983) note that

the assessment of human expertise is just as troublesome, and they cite the need for a "gold

standard" or performance criterion against which expert systems can be judged. This need

is still present.

A measurement model for expert systems will need to account not only for alternative

user contexts, decisions, resources, and goals, but also may serve three functions:

1. Provide approaches to evaluate candidate tools (e.g., "shells"), for those

frequent occasions when expert system development is assisted by commercial

products.

2. Provide approaches to evaluate the process of development at each stage.

3. Provide approaches to evaluate the quality of the product and process of expert

systems.

Any measurement model needs to account for a full range of factors that influence the utility

of the resulting information. Among the most salient is the type(s) of decisions of interest.

At issue is whether the intent of the evaluation is summative (that is, to make a choice
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among .,mptirg products, as in steps 1 and 3) or formative (that is, to influence the

quality of the process and product as it is developed). A measurement model should also

encompass both quantitative and qualitative data collection and analysis techniques. A

measurement model should also provide options that are low-cost as well as those that are

resource-intensive. The best information can always be obtained at a high cost. What is

critical is that a model optimize cost of the measurement process with risk and criticality of

the application under development, e.g., exploratory systems may only need low-cost

techniques.

When we focus on he quality of the software as it undergoes development and in its

finished form (see Table 1). we are forced to consider another set of dimensions that a

robust measurement model for expert systems must include. The first set of issues

involves looking systematically at the domain of expertise under development. Of concern

is the quality of the domain knowledge from both reliability and validity perspectives. On

the one hand, one needs procedures to assess the extent to which the knowledge acquired

by the system reliably and comprehensively represents the expert(s) participating in the

study. On the other, one may be interested in the extent to which the system would solve

problems comparably to other experts. In order to accomplish this, one could consider the

development of benchmark problem typologies, where specific problems will vary as a

function of the domain and each type will incorporate some reasonable combination of

critical domain knowledge and reasoning. This approach will require careful feasibility

analysis to determine whether such typologies can overcome the varied purposes and

domains of expert systems.
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Table 1: Quality Concerns for Expert Systems

Acquisition
Concern User Concern Quality Fact.

PERFORMANCE- How Well Does It Utilize A Efficiency
HOW WELL DOES IT Resource?
FUNCTION?

How Secure Is It? Integrity

What Confidnce Can Be Placed Reliability
In What It Does?

How Well Will It Perform Under Adverse Condition? Survivability

How Easy Is It To Use?
Usability

DESIGN- How Well Does It Conform To Correctness
HOW VALID IS The Requirements?
THE DESIGN?

How Easy Is It To Repair? Maintainability

How Easy Is It To Verify Its Performance? Verifiability

ADAPTATION- How Easy Is It To Expand Expandability
HOW ADAPTABLE Or Upgrade Its Capability
IS IT? Or Performance?

How Easy Is It To Change? Flexibility

How Easy Is It To Interface Interoperability
With Another System?

How Easy Is It To Transport? Portability

How Easy Is It To Convert For Reusability
Use In Another Application?

Reprinted from Bowen, Wigle and Tsai (1984)
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A measurement model will also make explicit the assessment of unintended outcomes

of the expert system development or product. Unintended outcomes may be positive and

result in the identification and ratification of new objectives or applications of an

implementation, or they may be negative and create negative side effects that dog the

application until its replacement. An example of a negative, unintended effect of

implementing an expert system is described below.

One potential negative side effect of relying on automation is the danger that

apprentice users will not gain expertise of their own as they increasingly rely on such

systems. This could result in changes in the availability and, hence, cost of expertise.

During the development of expert systems, expertise, which is already rare, must be

allocated to the task of knowledge engineering. The increased scarcity of experts can be

expected to make them even more costly in the short run. When the system is developed

and implemented, however, novice or apprentice users can perform tasks that would

otherwise have required the expert. Suddenly expertise is plentiful and cheap. But as

users rely on the system, they may fail to gain the skills that would develop them into

experts. This could lead to an eventual knowledge dearth in those domains where expertise

was originally in short supply. Such a shortage could be even more severe than that which

motivated the original development. A fully developed approach to evaluating expert

systems must consider indicators of unintended consequences in order for evaluation to

assist in the management of expert systems development and implementation.

UCLA/USC personnel have been engaged in developing a characterization of the

expert system development process for the past two years. This ongoing project has

resulted in a detailed characterization of the development process in terms of stages of

developrnen, evaluation considcrat",o and knowledge engineer question types

throughout the process. Documentation has been compiled in a case study methodology on
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some differences in the development process with changes in project organization, size,

and purpose, application type, knowledge programming environment, and personnel

attributes. These differences have implications for the complexity of a development model

as well as the kind, purpose, and timing of measurements that might be made during the

development.

A brief comparison of the stages of development for one expert system (a

psychometric selection consultant) and a conventional software development cycle

illustrates some of the differences (see Table 2). We have observed several variations on

the expert system development process outlined in the table. The mapping of stages

between the two approaches is thus tentative.

One way in which the process differences may lead to differences in measurement

methodologies is that expert system development does not lend itself well to the use of

written formal specifications. Iterative design and coding tends to be more of a data-

driver---as opposed to requirements-driven--enterprise. Many details of functional

specification only emerge in the course of development. While many software attributes

such as speed requirements or user interface design may be specified in advance, the

contents of a knowledge base and the implicit inferencing logic-i.e. the program itself-is

the only complete statement of the software's problem-solving capabilities. This absence

of specifications means that assessment cannot simply be comparisons of specifications

and outputs, or specifications and code. Rule explanations, whether explicitly elicited and

coded, or generated by the shell (e.g. via inference trees), constitute the documentation for

the origin and purpose of rules. The effect of these rules under different inputs and

inference methods determines the problem solving behavior of the system. Thus the task

of -valuation of problem solving functionality Lx omes one of "reverse-engineering" the

performance specifications from the functioning knowledge base.
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Table 2. Differences in Development Cycle

Between Experts Systems and Standard Software

- - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- -- - -- - - - - - - - - - - - - - - - - - - - -- - - -- - - - - - - - -- - - - - - - - - - - - - - - -.

Conventional Software Development Expert system development
............................................................................................................

Software requiremcnts analysis Select domain expert, elicit overview

of domain, terminology, etc., select

task for application

Preliminary design Elicit cases, identify functionai blocks
in consultation process

Detailed design Map cases onto structure, refine and
limit scope
(begin coding)

Coding and unit testing Elicit additional rules and cases, test,
refine

CSC integration and testing Expert review

User or field test

CSCI-level testing Formal testing and certification of
expertise

(from Slawson, 1987, and Bowen, Wigle & Tsai, 1984)

A study of the knowledge engineering process by UCLA personnel (Slawson,

Ilambleton & Novak, 1988) revealed that much knowledge is elicited during the course of

development that never ends up in the system. Some of this is deliberate, due to scoping or

resource constraints, or rational decisions of the knowledge engineer or programmer.

However, some inf-,'mation seems to simply get lost in the process. A metric which might

be explored is "How much of the data elicited in the knowledge engineering sessions ended

up in the system?" The companion question, "Was this enough?" can be answered in terms
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of performance measures. But the first question can also be answered by examination and

cataloging of the knowledge base. Where omitted knowledge is important, a standard of

performance could be derived from the amount of knowledge a novice learner would have

obtained expending similar re ;ources to the knowledge engineering task.

HUMAN BENCHMARKING

Our human benchmarking approach is to establish an evaluation, that is, to norm an

expert system's performance on a sample of people's performance. The implication of this

approach is that it goes beyond the conventional approach of expert system evaluation and

aims to build psychometric criteria through comparison of an expert system's performance

with differentiated performances by a sample of people.

To provide a context for our human benchmarking approach, the literature review

activities included four themes: the current status of expert system evaluation, a search for

cognitive skill instruments, parallel comparison of categories between expert system and

cognitive skill instruments, and analysis of the target expert system (i.e., "Gates").

Evaluation of Expert Systems

To investigate the current state of the art in evaluation of expert system, we located

a large number of studies that either dealt with expert system evaluation or included

e',aluation as one component of expert system development. We began the review process

by computer searching four data bases, i.e., Education Resource Information Center

(ERIC), National Technical Information Service (NTIS), Applied Science & Technology

(AST), and University Microfilm Abstracts (UMI) of dissertation abstracts. The searches

yielded a set of 103 relevant studies including empirical research, reviews of literature, and
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theoretical papers. The keywords used for the search and the results are presented in Table

3. The abstracts themselves of relevant hits are found in Appendix 1.

Table 1. Keywords and Results for the Computer Database Search

Dates of Relevant
System Search Keywords Hits flits

ERIC Jan. 1983- Expert system & 145 50
Mar. 1989 Evaluation

Measurement
Assessment
Comparative study
Test

Intelligent tutoring system
Intelligent computer
aided instruction

NTIS Jan. 1985- Expert system & 151 28
Dec. 1989 Evaluation

Testing
Assessment
Measurement
Test and evaluation
Benchmarking
Benchmark
Comparative
Intelligent tutoring system
Intelligent computer
aided instruction
Knowledge-based
tutoring system

UMI 1985-1988 Expert system 336 23

AST Oct. 1983- Expert system 3 2
Dec. 1989 evaluation
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Our analytic review of these reports of evaluation of expert systems can be

classified into two major configurations: evaluation criteria and evaluation methods.

Evaluation criteria concern what characteristics or attributes of an expert system an

evaluation is to capture. Whereas evaluation methods are related to specific procedures of

which three primary decisions need to be made, that is, what to validate-process, product,

or both, what to vplidate against-preset criteria or expert performance, and what to

validate with-the choice of test cases.

Evaluation Criteria

Evaluation criteria for expert systems usually reflect the goal of the evaluation as

being concerned with both the system and its users. Accordingly, evaluation criteria for

expert systems falls into a general framework for evaluation of a software system which

includes three classical aspects-reliability, validity, and usability. For example, HolInagel

(1989) proposes seven criteria along these three general evaluation principles (see Table 4).

These criteria are correctness of the reasoning techniques, sensitivity, robustness,

correctness of the final decision, accuracy of the final decision, quality of the human-

computer interaction, and cost-effectiveness.

Kaisler (1987) suggests two classes of metrics for evaluation of expert system

functions which are summarized in Table 3. One class of metrics is proposed to assess

performance during development in terms of problem solving ability. The second one

focuses on qualitative evaluations based on quantitative attributes of system. Such metrics

can be used to assess size, speed, usefulness, and other criteria.

Kaisler's suggested metrics are adaptations of some conventional software systems

metrics to the special qualities of knowledge based systems. He proposes several
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categories for metrics which are summarized in Table 5 as well as potential metrics which

are summarized in Table 6.

Table 4. Components of System Evaluation

(Adapted from Hollnagel, 1989)

Method Evaluation Evaluation Criteria

Reliability Correctness of Reasoning or the internal
Technique consistency of the reasoning technique

Sensitivity or the minimum variation in
input needed to change the outcome of the
decision

Robustness or the ability to absorb and
compensate for non-standard input

Validity Correctness of the Final Decision or Output
consistent with the needs in the given contexts

Accuracy of the Final Decision or the extent
to which the consequences of alternatives
are satisfactory

Usability The Quality of the Interface or the degree to
which the interaction between users and
system functions effectively

The Cost-Effectivencss or the gain from the
use of the system related to its cost
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Table 5. Attributes for Expert System Evaluation

(adapted from Kaisler, 1987)

Attributes Issues for Metrics

Evolution and growth Rapid prototyping continual continual growth in
code

Factoring of (complex) rules into several rules
affects speed,volume, and size

Hardware e.g. Price/performance
conventional vs.
Lisp machines Effect of engine qualities on interpretation of

execution metrics

Functional improvement Improved accuracy vs. handing larger, more
complex problems

Domain specificity of problem complexity
metrics

Metrics specific to application types (e.g.,
diagnosis, consultation, planning)

Ease of system redesign Assessing impact of qualitative changes
(e.g., splitting a class in declarative knowledge
results in re-assignment of instances)

Trend analysis Interpretation of incremental snapshots (e.g.,
more rules may mean more power but also
less speed)

Applications vs. technology Shell vs. application metrics:
interrelated performance effects
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Table 6. Potential Matrices for Evaluation of Experts Systems:

A Computer Science Perspective

Knowledge base size Represents magnitude of development effort.
May include components for declarative and
procedural knowledge.

Examples: object volume (e.g. number of
frames), relative object volume (distribution of
classes / instances), average number of slots per
class, number of slots having default values vs
derived values averaged over the number of
instances in a class, weighted average size of
instance in terms of number of slots it possesses
rule volume, average number of hypotheses and
consequents, maximum for any one rule,
histogram of rules according to number of
hypotheses and consequences.

Knowledge base execution Efficiency of data management routines to deliver
metrics information to execution routines.

Examples: slot access time, slot storage time.

Execution metrics Speed of evaluating procedural knowledge.
Indicate quality of programming within shell and
amount of knowledge.

Examples: number of rules considered per
cycle, number of rules selected per iteration,
number of rules executed per iteration, number of
cycles to solve a problem. Stationary metrics,
e.g. number of rules to reach equilibrium after an
item of data, time to reach equilibrium

Application granularity Amount of information in individual rules as
well as number of distinct concepts in procedural
knowledge.

Examples: results of rule base normalization,
application vocabulary (e.g. number of operators
for rules, number of predicates which may be
used in rules, etc.)

(from Kaisler, 1987)
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Rothenberg et al.'s work (1987a,b) on the evaluation of expert system shells is

closely related to the evaluation of its applications, since shell evaluation must take into

account its application characteristics, their preliminarily classified attributes of problems,

problem domains, and projects (Table 7). These attributes identify dimensions by which

applications attributes might be classified.

Table 7. Characteristics for Expert System Shell Evaluation

(adapted form Rothenberg, 1987)

Problem characteristics

Problem domain
kinds of knowledge
constraints

Problem to be solved within the domain
special processing/knowledge/representation
problem type
other problem attributes

Knowledge acquisition/expertise
characteristics and constraints

Target environment
constraints
end-users

Project characteristics

Scope
goals and budget

Development environment
constraints

Development team
characteristics

14



Although metrics may not be appropriate for each of these dimensions on any given

product a measurement should consider how the overall project and problem characteristics

may affect the metrics that are eventually selected. An effort should also be made to keep

the metrics, or at least the categories of metrics, relatively independent. Metrics with low

intercorrelations would have the advantage of providing more information about the object

of analysis providing that each of measures were relevant to the purposes of evaluation.

The existence of a logical set of attribute classes, such as that proposed by Rothenberg et

al. (1987a,b), should make it easier to keep metrics independent at least on logical, if not

on empirical, grounds.

Evaluation Method

Hollnagel (1989) summarizes five categories of evaluation method and their

respective advantages compared by referring the criteria proposed previously (Fig. 1).

These methods focus on the evaluation of an expert system after its implementation.

15



Method Reliability

Method Validity

Cost-effectiveness

Quality of HCI
Robustness

Sensitivity

Correctness of reasoning

Accuracy of decision

Correctness of decision

Turing test * * L L

Expert Assessing * * * L M

Statistical Sampling * * * * * M H

S ummative;Formative * * * L M

Analytical Hierarchy * * * * * L H

Fig. 1. Comparison Between Five Evaluation Methods

(Hollnagel, 1989)

Note: L: low; M: median; H: High.and asterisk (*) indicate precence of a characteristic

Turing's test. the classical way of evaluating expert systems. An expert as a

judge compares the system's performance and human expert's performance without

knowing the subject performer's identity. The MYCIN System was evaluated with this

method (Yu, et al., 1984)

Expert assessment. Criterion-referenced assessment. An expert system is

assessed by an expert judge to compare the system's performance with the clearly

predefined criteria (either an expert' performance or a historically set standard) in an

absolute way rather than based on a comparison with another system or expert's

performance (Hudson, & Cohen, 1984).
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Statistical sampling. Statistical sampling of test cases. The test cases for the

assessment of performance by an expert system are statistically sampled so that the chosen

cases are known to be representative (Yu, et al., 1984; Hudson, & Cohen, 1984)

Summative and formative evaluation. Summative evaluation (Scriven, 1967)

focuses on overall choices among systems or programs based upon performance levels,

time, and cost. This evaluation is essentially comparative and contrasts the innovation

against other options. The typical questions the evaluation ask are "Does the intervention

work?", "How much it costs?", and "Should we buy it?". Fromative evaluation (Baker,

1974) seeks to provide information that focuses on the improvement of the innovation and

is designed to assist the developer. Formative evaluation also addresses, from a

metaevaluation perspective, the effetiveness of the development procedures used in order to

predict whether the aplication of similar approaches will likely have effective and efficient

results (O'Neil, & Baker, 1987). Thus, the formative evaluation seeks to improve the

technology at large, rather than the specific instances addressed one at a time.

Analytic hierarchy process. The expert system is decomposed into constituent

components to see each part's performance (Liebowitz, 1985).

Whereas Hollnagel's methods focus on the evaluation of an expert system after its

implementation, O'Keefe et al.'s (1987) methods of validation of expert system capture the

whole development process for expert systems (O'Keefe, et al., 1987) (see Table 8). They

categorized validation methods into the qualitative and the quantitative. These validation

methods are described in Table 8. The face validation and the predictive validation method

17



Table 8. Methods for Validation Evaluation

(Adapted from O'Keefe et al. 1987)

Method Description

Face Validation Preliminary comparison of system performance
with expert performance against a prescribed
performance range (???)

Predictive Validation Assessment of performance by using historic
cases and either (1) known results or
(2) measures of human expert performance on
these cases (???)

Turing Tests Expert judges' blind evaluation of both system
and human expert performance for given cases

Field Tests Evaluation of prototypical expert system in the
intended context

Subsystem Validation Decomposition of subsystems in an expert
system and evaluation of the performance of
each subsystem under given input data

Sensitivity Analysis Validation of system by systematically changing
expert system input variable and parameters over
some range of interest and observing the effect
on system performance

Visual Interaction An validation environment in which experts'
direct interaction with expert system for face
validation, subsystem validation, and sensitivity
validation

Quantitative validation Statistical techniques to compare expert system
performance against either test cases or human
experts
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are preliminary approaches to validation during the development of the system. Turing

tests and field tests are validation methods used after the installation of the system.

The essential task of expert system evaluation is to translate selected criteria into

testable requirements, determine variables or parameters constrained by the requirements,

and design test cases for the manipulation of the variables or parameters. However, the

most serious problem in carrying out these procedures is that testable requirements are hard

to define bccause ilatively few requirements are initially initially but formulated during or

after the development of an expert system. Related to this problem is that the profile of

representative test cases is usually unknown, thus there is great uncertain in whether a set

of selected test cases represents a reasonable range of example collection.

It is also common to generate test cases to be evaluated by the domain expert during

system development. The establishment of a criterion-referenced testing technology for

human performance assessment is a relatively recent phenomenrn that should not be

ignored. Test case generation today is often of the ad-hoc variety, where the expert

arbitrarily generates "typical" situations and solutions and the knowledge engineer

introduces variations in some parameters in order to test boundary conditions and other

variations. The failure to circumscribe the domain in terms of performance criteria makes it

difficult to ever know if all of the important variations have been tested. Criterion-

referenced testing and item generation technologies used in human performance assessment

could be of enormous benefit in designing test case domain specifications that align with

applications requirements, specifying input and output conditions, and generating items

which effectively sample the domains. Without some systematic approach to test case

development, it is difficult to know the limits of an application or to be assured that gaping

holes do not lurk within the code.
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In an attempt to improve test case generation technique Hall and Heinze (1989)

developed a simulation technique. Their test case simulation model (Fig.2) proposes three

dimensions-characteristic of model parameter, model parameter, and test case category-

for defining any test case.

Model P.-ameters

Characteristics

Obvious

Average

Test Case Category Subtle

Boundary

Invalid

Fig. 2. The Test Case simulation Model Space

(Hall, & Heinze, 1989)

The range of test case collection contains five categories from the obvious to the

invalid proposed by Geissman and Schultz (1988). Model parameters indicate identified

conditions under which the expert system is to be tested. Characteristic specifies the

region of a parameter. For instance, they used this model to generate test cases to assess a

Signal Analysis Expert System. An obvious test case is defined as consisting of a direct

current signal with a low power level, low noise, no signal dropout, and no interfering

signal (Fig. 3).
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They suggest that having specified the test cases in this manner, the various

categories can be weighted to reflect the degree to which the expert system performance in

each category affects its overall performance.

Power Noise Dropout Interfering

High

Medium

Low

None

Fig. 3. Definition for an Obvious Test Case.
(adapted from Hall, & Heinze, 1989)

The simulation model for test case gcneration for expert system evaluation appears

to be appealing. It provides an approach to the search for "golden assets"--test case

collection--against which to test expert systems. The problem, however, still exists how to

define each category of test case, that is, what mean "obvious, average, subtle, boundary,

invalid." Because having the definitions explicitly determined depends on a complete

specifications for an expert system which has been considered very difficult.

Empirical Studies in Evaluation of Expert System

In the selected set of abstracts (see Table 9) 29 are empirical studies. The methods

they employed included Turing test, expert assessment of face validation, criteria

assessment with either known results or established test cases, field test, subsystem
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validation, human benchmarking, summative and formative evaluation, impact analysis

(effects of expert system uses on people's performance and organizations' effectiveness

and efficiency such as workload, accuracy, and confidence), and in expert system tool

comparative study. These studies are presented in Table 9 in terms of system type,

evaluation method, and, if provided, number of test cases.

It is not surprising that most of the studies evaluated systems in the way "do what

Charlies does" (Geissman, & Schultz, 1988, pp.2 8 .) since validity of systems was the

main concern in these evaluations.

The test cases in these studies either were generated by an expert or experts in

correspondcnce with his or their perceived pre-specification for a system (e.g., Hushon,

1988), or previously used examples in evaluation of similar systems (e.g.,Weiss, &

Kulilcwski, 1988; Tam, et al., 1988). The representativeness of the cases seems to be

problematic because the test-case generation technique relies only on the experts' arbitrary

judgements which vary across situations and over time. In fact, the representativeness

issue occurs during the process of expert system development. The domain knowledge

coded in an expert system is usually extracted from one or two experts in the field (e.g. the

Gates system's domain knowledge is from an expert). However, there is great variation in

domain experts for a given problem, even the same expert may change his solution

methods for the same problem over time. Thus, merely using pre-specifications as

evaluation criteria and a very small sample of test case make the representative of the test

cases uncertain
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Table. 9 Empirical Studies in Evaluation of

Expert System and Expert System Shells

Expert System Type Method No. Cases Reference

Consultant System Turing Test 10 Parry, 1986
for the Disabled

PREDICT for Forest Schmoldt, 1987
Pest Management

System for Electronic Face Baldwin, 1985
Circuit Vall.'ition

EASY for Physical Work Chen, 1987
Stress Analysis

Diagnostic system for Colbourn, 1982
the Reading Disabled

System for Chemical Hushon, 1988
Emergency

Decision Making System 5 Kearsley, 1988
For Training Managers

System for Chemical Olivero, 1987
Analysis

ITS for Engineering Richardson, 1986
Mechanics

K-BAS System for Teacher 5 Stevenson, 1987
Performance Evaluation

System for Stowage Criteria Tam, et al.,1988
Planning Assessment

Automatic Math Modeling Wang, et al., 1988

Rule-Based Weiss, et al., 1988
Classification System

NIPS System for Inspecting Anderson, et al.,
Materials Processing in
Space

Financial Consultant Field Test 27 Phillips, 1987
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Table 9 (cont'd)

Expert System Type Method No. of Cases Reference

GRASPERS For Graphic Field Test Tang, 1986
Presentation

Chess Expert System Subsystem Validation Schaeffer, 1986

IRUS Natural Language Human Baker, et al.,
System Benchmarking 1988

MANDATE Consultant Summative Hofmeister, 1988
System for Education Analysis
Program

HAWA MACH-II ITS for Summative & Massey, et al.,
Troubleshoooting Skills Formative 1986

Decision Aid System Impact analysis Eining, 1987
For Auditor Training

Tutoring System Grabinger, 1988

Decision Support System Isett, 1987

Expert System Interface Lamberti, 1987

Consultant System Perdu, 1988

TPIXIE and MBR Tutoring Sleeman, et al.
System for Algebra 1988

ITS for Basic Algebra Stasz, 1988

financial Consultant Sviokla, 1986
System

Tubro Prolog Tool evaluation Loftin, 1987

Expert System Shells Example-Based Shaw, 1988
Rule-Based
Comparison
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Cognitive Skill Instruments

The searching for cognitive skill instruments was intended to assist us in

developing a "human benchmarking" approach to the evaluation of expert system. The

work began with several cognitive and metacognitive skill, that is, monitoring, problem

solving, reasoning, inference, planning, diagnosis, and scheduling. The selection reflected

the combined perspectives from cognitive psychology and expert system applications. For

example, "problem solving," "reasoning," "inference," and "monitoring" were considered

because they are almost the same labels in expert system applications and cognitive

psychology, wl-creas "planning," "diagnosis," and "scheduling are from categories of

expert system applications. Later, we concentrated effort in the areas of reasoning and

metacognition. The main source searched for these cognitive skill instruments were the

Buros' mental measurements yearbooks (1985-1989) and the Educational Testing Service

(ETS) test catalogues (1986-1989). In addition, the Buros's mental measurement institute

was contacted recently for information about unpublished tests. In the field, active

researchers (e.g., Flavell, Mayer, and) were contacted by Dr. Wittrock for their

suggestions and advice. Finally, some relevant studies were located from the ERIC

system.

The initial review work revealed the following findings.

Monitoring. There are two kinds of monitoring in cognitive activity. Monitoring,

as a specific performance, refers to the cognitive activity of examining displayed status

information, both formal (control panel displays) and informal (sounds, vibration, smells,

etc.) (Moray, 1986; Parasuraman, 1986). As a general executive process, monitoring is

directed at the acquisition of iaformation about and the regulation of one's own ongoing

problem solving processes, which is described as "cognitive monitoring" by Flavell

(1981), "metacognition" by Sternberg (1985), and "executive decision" by Kluwe (1987).
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These two levels of monitoring differ in that the former monitors the external world (e.g., a

display) while the latter monitors the internal world (i.e., one's thoughts). Monitoring as

an executive process can use information from monitoring one's thoughts of the external

world (e.g., a display). In this report, the term "monitoring" refers to the executive

process.

One of the possible effects of monitoring function is the ease with which cognitive

strategies are transferred to new task demands (Kluwe, 1987). However, frequent

monitoring does not necessarily lead to successful performance (Kluwe, 1987). For

example, low task proficiency and low confidence may increase frequency of monitoring.

Effectiveness of monitoring may be influenced by task proficiency (Hickman, 1977) or

expertise. Hickman interviewed two widely read professional persons, asking them to

reflect upon their own comprehension processes while reading. Their comments

demonstrated a clear sense of purpose for reading, a very active use of identifiable

strategies, and an emphasis on relating prior experience and knowledge to material read.

Personal cognitive style may affect monitoring function (Walczyk, & Hall, 1989).

They used the Standard Matching Familiar Figures Test (Kagen, et al., 1964) to identify

reflective and impulsitive subjects. The subjects read passages, each containing

incongruent information. The subjects' performance at detecting these contradiction was

recorded as index of comprehension monitoring. They found that the reflective children

detected significantly more inconsistencies than the impulsive children across grade levels

(3-5 grade).

Unfortunately,we have not found a commercially available instrument for

measurement of monitoring or metacognition. In some empirical studies monitoring has

been usually measured either through the subjects' self-report of their cognitive processes
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during their performance or through some questionnaire about strategies they used in their

learning and problem solving. We will describe these approaches later.

Reasoning. Reasoning usually includes inference. Because to make an inference

is to pass from something that we know to something else that seems to follow from it

(Gellatly, 1989). Problem solving is to set up a goal and to carry out a set of operations to

reach the goal, which, of cause, heavily involves reasoning and inference (Sinnot, 1989)

Reasoning has been studied and measured in typical reasoning tasks such as syllogistic

(Johnson-Laird, 1983; Rips, 1983) and conditional reasoning (Wason, 1983). and

problem solving (Sinnot, 1989). Conditional reasoning refers to that given four conditions

P, -P, Q, -Q, the conditional rule "if P then Q" is determined with certainty only under the

condition in which it is falsified. A categorical syllogism consists of two premises and a

conclusion, each of which describes the relationship between two sets of things. The first

premise relates one term, A, to a second term, B; the second premise relates B to a third

term, C; and conclutsion states a relationship, if one exists, between A and C. Thus,

reasoning, inference, and problem solving, which were selected as separate categories,

could be treated under one reasoning category. Also, there are relatively rich sources of

studies dealing with reasoning (see Galotti's review, 1989) and rich source of reasoning

tests we will describe later.

Planning. Planning, in cognitive psychology, is viewed as a problem solving

approach which is defined as the predetermination of a course of action aimed at achieving

a goal (Hayes-Roth, 1988;); it is also considered as one component of metacognition

regulating ongoing thinking processes (Beyer, 1988). We have no commercially available

test found for planning skills.
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Diagnosis and Scheduling. As mentioned above diagnosis and scheduling are

from the categories of expert system applications. There are no such categories in cognitive

skills and thus no measures.

Instruments for Reasoning

The following reasoning tests may be useful for our project.

Arlin test of formal reasoning. (Arlin, 1984). The specification of this test

is based on Piaget's intelligent model (Piaget, & Inhelder, 1967). The test consists of 13

problem situations involving eight formal concepts which are described in Table 10.
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Table 10. Components of Arlin Test of Formal Reasoning
(adapted from Arlin, 1984)

Component Description

Multiplicative Compensations Understanding gain or loss in one dimension are
made up by gains or losses in the other
dimensions, for example, width and length are
compensatory for a given area

Probability The ability to develop a relationship between the
the confirming and the possible cases, which
predicts the probability of an event with a set of
data

Correlations The ability to know if there is or is not a causal
relationship and to explain the minority case by
inference of chance variables

Combinational Reasoning The ability to generate all possible combinations
of given number of variables, events, or
scenarios

Proportional Reasoning The ability to discover the equality of two ratios
which form a proportion.

Forms of Conservation The ability to deduce and verify certain
conservations by observing their effects
and inferring their existence

Mechanical Equilibrium The ability to simultaneously make the
distinction between the coordination of two
complementary forms of reversibility--reciprocity
and inversion

The Coordination of The relativity concept asking the ability to
Two or more Systems or coordinate two or more systems of reference
Frames of Reference

Kit of factor-referenced cognitive tests. (Ekstrom, French, & Harman,

1976). This kit is a set of instruments for identifying certain aptitude factors i-, an factor-

analytic model of intelligence. It includes a set of 72 marker tests for 23 cognitive factors.
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Among the tests there are three dealing with reasoning skill. They are inductive reasoning,

general reasoning, and logical reasoning. These are described in Table 11.

Table 11. Description of Reasoning Factor

(adapted from Ekstrom, et al., 1976)

Factor Description

Induction The reasoning ability to form and try out
hypotheses that will fit a set of data

General Reasoning The ability to select and organize relevant
information for the solution of a problem

Logical Reasoning The ability to reason from premise to conclusion,
or to evaluate the correctness of a conclusion

Cornell critical thinking test. (Ennis, Millman, & Tomko, 1985). This test

contains subtests of induction, deduction, assumption, evaluation of arguments, and

interpretation (see Table 12). These are inferred from the definition "critical thinking is the

process of reasonably deciding what to believe and do." (reference) The test has two

forms. Level X is usable in grades 5-14; (???); level Z is used for gifted or advanced

secondary students, college students and other adults. The items in the test are organized in

terms of themes; for instance, several items are organized around some conclusions derived

from a set of data.
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Table 12. Aspects of Critical Thinking In The Cornell Test

(adapted form Ennis, et al., 1985)

Aspects of Critical Description
Thinking

Induction Determine whether a fact Nsupports an idea (???)

Deduction Decide what follows from the reasons given

Credibility Make a judgment whether a given statement
is believable according to given information

Assumptions Infer what certain ideas taken for granted
underlying a statement

Meaning Figure out the reason why a generated statement
is valid(???)

Measurements for Metacognition

Although there are no commercial available instruments for the measurement of

metacognition, researchers in this field designed some for their own research purposes.

The techniques for measurement of metacognition in empirical studies may be categorized

into six kinds. The following are examples of these methods.

Error detection paradigm. This method is mostly used in the measure of

reading comprehension monitoring. A short passage contains a single contradiction. The

contradictory information is usually not in contiguous sentences. For example, one

passage describes cave-dwelling bats that are deaf, toward the end of the passage it is stated

that th - bats use echoes to locate objects (e.g., Walczyk, & Hall, 1989). The subject is

asked to detect the contradictions. The number of correct detection is used as an index of

reading compeihension monitoring.
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Self-rating scale. The reading awareness interview was designed to assess

children's awareness about reading in three areas: evaluating task difficulty and one's own

abilities, planning to reach a goal, and monitoring process towards the goal. The interview

contained scale items (Jacobs, Paris, 1988; Cross, & Paris, 1988). For example, one

monitoring item is "Why do you go back and read things over again?" with three scored

chioces: a) because it is good practice (1 scores); b) because you didn't understand it (2

score); c) because you forget some words (0 scaors). Jocobs and Paris (1987) suggested

that the instrucment is sensitive to developmental and instructional differences in children's

mitacognition about reading.

Questionnaire Inventory. Learning strategy inventories use this form (ref).

The question examples are "Do you make a plan when you write essay?", or "How do you

manage to remember difficult materials?" (???) (Zimmerman, & Martinez, 1986; 1988).

Thinking-Aloud protocol analysis. Subjects were asked to solve LOGO

programming problem. The statements from their thinking-aloud during problem solving

were categorized in the scheme of Stemberg's componential intelligence model including

these components: deciding the nature of the problem, selecting performance components,

combining performance components, selectiing a mental representation, allocating

resources, monitoring solution, and being sensitive to external feedback (Clements, 1987).

Evaluating relative efficacy of strategies of strategies used. Two

memory strategies were introduced to the subjects when they were asked to remember a list

of vocabulary. Then, they were asked to evaluate the relative efficacy of the strategies

according to their memory experience (Brigham, & Pressley, 1988).

Behavior observation. Subjects were requested to solve pizzles under

reversible and irreversible conditions (the irreversible condition referred to that once a piece

32



of the puzzle was placed on the working cardbord it became fixed and could not be

removed). Changing the problem solving condition would cause children to increase the

intensity and to decrease the speed of their solution approach. The change of actions was

viewed as the evidence of monitoring and regulating the course of their problem solving

processes (Kluwe, 1987).

Parallel Analysis of Cognitive Skill Instruments and Expert System

Categories

To use an cognitive skill instrument to norm "intelligence" of an expert system one

primary task was to examine the possible overlappings between categories of expert

systems and types of cognitive skill instruments. Only when a particular category or

function of expert systems is identified to be parallel or not parallel to a particular type of

cognitive skill instrument, can the decision be made that the particular instruments are

legitimate to be used for norming the performance of expert systems on that of human

beings, and that this human benchmarking approach is valid. Both general and specific

approach were used to accomplish this task. The general approach used two category

systems of expert systems (Chandrasakaran, 1986; Shalin, Wisniewski, & Levi, 1988),

whereas the specific approach employed an expert system (GATES). Their possible

correspondences were examined based on the descriptions or definitions of the categories

or functions of expert systems and cognitive skill instruments.

General Approach

For the general approach three category systems were reviewed (Swigger, 1989).

Waterman's system (1986) classifies expert systems into ten categories in terms of types

of tasks expert systems are designed to perform. They are interpretation, prediction,

monitoring, diagnosis, debugging, repair, instruction, design, planning, and control.

Shalin et al.'s system (1988) categorizes expert systems according to their functions and
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knowledge requirements. These categories are classification, interpretation, design, and

problem solving and planning. They are described hierarchically inclusive because the

functions and the knowledge requirements for more complex expert system functions

subsume requirements for less complex expert systems. Chandrasekaran's system (1986)

identifies five critical functions or 'eatures called "generic tasks"--hierarchical classification,

hypothesis matching or assessment, abductive assembly, hierarchical design by plan

selection, and state abstraction--through the analysis of a diagnosis and a design systems.

If two dimensions--task and skill--were used to describe the features of these category

systems, Waterman's is task-oriented while Chandrasekaran's skill-oriented. Shalin's is in

the middle. Because the "generic task" analysis seems to be more able to capture similar

functions different expert systems may have, which corresponds to our approach to

evaluation methodology of expert system, and because almost all cognitive skill

instruments focus on skills rather tasks, Chandrasekaran's and Shalin et al.'s systems were

chosen for the analysis of possible relations between their categories and cognitive

instruments (Table 13).

34



Table 13. Parallel Analysis between Expert System Function
Classification and Cognitive Skill Instruments

Expert System Cognitive Skill
Function Classification Instrument

Shalin et al. (1988)

Classification The Kit Subtests:
(Matches the input features of an Deduction
exemplar of a class to a concept) Induction

Interpretation The Kit Subtests:
(Construct a coherent representation Deduction
from classified objects) Induction

Reading Comprehension

Design Pattern Configurartion
(Arranges objects according to
(constraint on these objects)

Problem-solving and Planning The Arlin Test
(Arranges actions according to The Kit Subtests:
constraints on action sequences) Figural flexibility

Spacial Scanning
Chandrasekaran (1986)

Hierarchical Classification The Piagetian Class-
(Organize concepts in terms of Inclusion Test
their relations with the top- The Kit Subtest:
most concept having control over Deduction
the sub-concepts) Induction

Hypothesis Matching or Assessing The Cornell Subtest:
(Generate a concept, match it Credibility
against relevant data, and Watson-Glaser Test:
determine a degree of fit) Inference

Hierarchical Design by Plan The Kit Subjects:
Selection and Refinement Figural flexibility
(Choose a plan based on some specifi- Spacial scanning
cation, instantiates and executes parts
of the plan, which in turn suggests
further details of the design)

State Abstraction Prediction Tests
(Predict a state change when a
proposed action may be executed)
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We examined the definitions of expert system categories and that of cognitive skills

or factors an instrument is intended to measure, then to determine in what ways they are or

are not parallel.

The results showed that the parallel relation between them are not simple. For the

instance of classification, the induction and the logical reasoning tests from the Kit of

Factor-Referenced Test (Ekstrom, et al., 1976) have been chosen. The induction test

measures the ability to form and try out hypotheses that will fit a set of data. It asks

subjects to find concepts of classes which will group all the given objects into these

classes. The nature of the task seems to be in correspondence with Shalin, et al.'s

definition for classification as matching the input features of an examplar of a class to a

concept. The logical reasoning test identifies the ability to reason form premise to

conclusion. One task of the test requires the constructing of hierarchical relations of

classes, which is a very matched test for Chandrasenkaran's hierarchical classification

category that is defined as organizing concepts in terms of their relations with the top-most

concept having control over the sub-concepts. However, there is somewhat subtle in that a

classification activity for human being includes concept formation and concept identification

(e.g., Vygotsky, 1978;). Concept formation employs a bottom-up (forward chaining in

artificial intelligence terminology) approach, while concept identification uses a top-down

(backward chaining) approach. The classification function in expert system application

usually only contains top-down approach (e.g., Chandrasekaran, et al.'s (1983) MDX

medical diagnostic system; Brazile, & Swigger's (1988) gate assignment system).

In addition to this, the data from developmental psychology (provided by Dr. M.

Wittrock) tells that the classification in terms of objects of function is viewed as a higher

level than that in terms of the objects' shape. But the same judgment may not be made in

expert system applications. It may be inappropriate to say that an system doing shape
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classification is "smarter" than that doing function classification because both carry out the

same function in a technical sense.

The analysis of the example above suggests both the possibility to use cognitive

skill instruments to norm expert system performance and the subtle distinctions between

them. Further detailed analysis is needed to get a clearer sense of this.

Analysis of the Gates System

Gates is an expert system for gate assignment at i'WA's JFK and St. Louis airport

(Brazile, & Swigger, 1988; 1989). It has been chosen as a target system for our human

benchmarking approach for two reasons. First, the system has some features (e.g.

monitoring functions) we are interested in for the benchmarking evaluation of expert

system. Second, we have good cooperative relation with the developers of the system and

they also show interest in our project, thus, it is convenient for us to reach all the document

as well as the details about the development of this system. In this section we will provide

a brief description of the system and a parallel analysis between the system's functions and

Shalin et al.'s (1988) and Chandrasekaran's (1986) category.

The Gates System

Gates (Brizile, & Swigger, 1988; 1989) is a constraint satisfaction expert system

developed to create the monthly gate assignment. Obtained from an experience ground

controller, the domain knowledge is represented in Prolog predicates as well as several

rule-like data structures including permission rules (the GATEOK predicate) and denial

rules (the conflict predicate). These two kinds of rule determine when a set of gates can or

cannot be assigned to a particular flight respectively.

The system uses the following procedures to produce monthly gate assignments
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I Considering an unassigned flight that has the most constraints first (a set of

FLIGHT rules);

2. Selecting a particular gate for a particular flight by using a set of GATEOK

rules that have been arranged in some priority;

3. Verifying whether the gate assignment is correct by checking it against a set of

CONFLICT rules;

4. Making adjustments by relaxing constraints to have all flights assigned gates;

5. After all assignments are made, adjusting assignments to maximize gate

utilization, minimize personnel workloads, maximize equipment workload.

The Gates Taxonomy and Expert System Categories

To bridge the above parallel analysis work with the GATES system, that is, how

the Gates' components or functions could fit these identified instruments, we asked one

developer of the system to make a parallel analysis of the Gates' components and Shalin et

al.'s (1988) and Chandrasekaran's (1986) expert system category. This analysis is

summarized in Table 14.
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Table 14. A Parallel Analysis of Gates Taxonomy

and Expert System Function Classification

Function Classification Gates Function

Shalin et al.

Classification Classify input feature of
plane type

Interpretation Infer the schedules given
data about plane type,and
other descriptions

Design Configure better schedule
using constraints of
plane type, arriving and
departing times

Problem-solving and Planning Planning operators--two

types of rule

Chandrasekaran's

Hierarchical Classification Not fit (??)

Hypothesis Matching or Process the three passes
Assessment by which the system keeps

refining its hypothesis and
produce a better schedule

Hierarchical Design by Plan Assign first flights and gates
Selection and Refinement with the most constraints,

then relax constraints to have
more flights assigned

State Abstraction Not fit (??)

The review discussed demonstrates that (1) there are different approaches including

evaluation criteria and evaluation procedures to expert system evaluation. The literature

offers diverse environments to capture developmental aspects of expert system evaluation;

(2) tt . parallel analysis suggests the possibility to develop a psychometric standard to
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evaluation of expert system; the analysis also helps to recognize relations and distir :tions

between cognitive psychology and artificial intelligence, which is important for our human

benchmarking approach as well as effective communication between the two fields.

Based on the above literature and expert judgement we are going to benchmark the

performance of the Gates system using a experimental methodology. Several theoretical

and technical advances are needed to be tackled to pursue this goal (Baker, 1989), which

will be reported in our next report.

Alternative approaches to evaluating expert systems involve the following: (a) the

use of expert performance ratings, (b) use of test cases or benchmarks, and (c) effect on

job performance, as was done on the MYCIN project (Shortliffe, 1976). A number of

expert raters or end users may make judgements about system performance, preferably in

blind designs to avoid bias. When multiple raters are used, validation should include the

assessment of interjudge consistency of ratings. For such metrics, generalizability theory,

or "g-theory" (Brennan, 1983; Cronbach, et al., 1972), holds great promise. G-theory has

been used successfully in military performance testing for analogous purposes (i.e.

minimizing sources of variance with multiple raters and performance items) but has never

been applied to expert system assessment.

Perhaps the ultimate test of an expert system is its effect on performance of the job it

performs or assists its user to accomplish. Assessment of expert systems via job

performance can be done using a controlled experimental method in a real or simulated task

environment. Quality of decisions made on a diagnostic consultation task, for example,

can be measured by expert ratings when the task is performed by an unaided novice, by

users with various abilities aided by the software, or by experts alone. Significant

differences with and without the software indicate its effectiveness or lack thereof.
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Significant interactions between software presence/absence and user characteristics would

indicate important factors to consider for training and selection of users when the

application is fielded.

Some of the more interesting recent work in evaluation of rule-based systems comes

from the cognitive arena. For example, Lehner et al. (1985) note that military expert

systems involve ill-specified knowledge bases where human experts differ considerably in

their opinions. Solutions usually involve merging expertise of multiple human experts with

differing areas of expertise. When military applications are embedded in background

systems, users are often not familiar with the specifics of the problem being addressed.

Thus Lehner characterizes the user's environment as one where multiple problem solvers

are trying to cooperatively solve a common decision problem. The different problem

solvers have access to different decision processes, heuristics, or data. Lehner's research

suggests the importance of the user having an appropriate mental model of the system's

process, especially when differing processes are involved. This kind of evidence suggests

that the user must be considered part of the system when evaluating its performance. When

expert systems perform in consultation with humans, the combined man and machine may

become the unit of analysis in measurement. Since the performance of expert systems

depends significantly on the users, human assessment becomes a critical dimension of

measurement. This will result in the development of metrics sensitive to the human

performance dimensions of expert system measurement.
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